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Abstract—Plastic stress-strain relations for perfectly plastic and strain-hardening materials in plane strain
condition are developed for materials that obey the Tresca yiold condition. A method of handling the
three-dimensional yield surface by constructing a two-dimensional equivalent vield surface is described.
mmmm-emmwobmwmmm.wdnm

specimen subjected to monotonically increasing loads. The results are compared 1o those previously
avuh*mhhmefuwmmmmnkmmmwm
developed for the Tresca yield condition in plane strain can be as casily used as those of the von Mises yield
condition, which have commonly been employed. The resulting solution is more comssrvative-and safe,
wmhhmwmmeyidde‘nion in elastic-piastic analyses of metal stractares
in design.

INTRODUCTION

The finité element method has often been shown to be well-suited to the solution of problems
involving non-linear behavior. This is especially true for problems in plasticity and sumerous
papers have described solutions to such problems. Reference [1] includes a brief account of the
early history of the use of the finite clement method in plasticity problems and Refs. [2] and [3]
give extensive bibliographies on this topic.

Although the Tresca yield condition has not gone completely unnoticed(1, 3, 4], a survey of
the literature indicates that von Mises yieki condition has predomimsntly been used in
clastic-plastic finite element analyses. It is apparent thet for many materials, and in particular
for the commonly used metals, the von Mises yield condition agrees as well with the
experimentalty produced vield surfaces as does the Tresca vield condition. However, since the
Tresca yield condition is inscribed within the von Mises yield condition, it is more conservative
and safe to use the former in actual designs. Furthermore, even though the initisl vield surfaces
for many materials may generally be established as being smooth, and consequently preferable
to work with, recent research(5] indicates that certain loading programs may lead to subsequent
yield surfaces which exhibit singularities. Thus, the manner of handling yield functions with
singularities becomes even more relevant.

In this paper, elastic-plastic stress-strain relations are developed for the plane strain case
and a method particularly suitable to handle the three-dimensional yield surfaces with
singularities in plasticity problems is described. These relationships are used+to obtain elastic-
plastic solutions for a plane strain notched tension specimen subjected to monotonically
increasing loads using the finite element technique. The results are compared to those pre-
viously available in the literature for the von Mises vield condition.

TRESCA YIELD CONDITION
The Tresca yield condition may be written in terms of the principal stresses as

F = [(o1— 02 — Gl er, — 09)* = GH(0))[(02 = 032 — 54 ()] = 0 §))
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in which &(«x) is twice the maximum permissible shear stress in a material in the plastic state.
This yield condition can be represented graphically by a regular hexagonal cylinder with its
centroidal axis oriented equidistant from the three principal stress axes oy, o2, 03, as shown in
Fig. 1, in which each of the six faces of the hexagonal cylinder is numbered and each edge or
corner is identified with a letter.
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Fig. I. Thweo-dimensional Trescs yield surface.

For a pesfectly plastic magerial the yield surface remains unchanged thropghout the plastic
history of the material. Howsver, the assumption of perfoct plasticity gemsrally does not
conform to the apparent bebavior of real engineering metals as experimental evidence indicates
that yield surfaces may change significantly once plastic flow takes place. A long history of
experimentation has made iv obvious that the relationship between the plastic flow and the
kinetics of a yield surface is complex, and cannot be given by a generally acceptable
strain-hawdening medel. Conssquently, elastic-piastic solutions employ assumptions of ap-
proximate postpield bebavior and the analyst must bear in mind the limsitations of the
assumptions made.

Isotropic strain-hardening, considered in this paper, is perhaps the simplest post-yield
behavior which may be assumed. Under this assumption, the yield surface must always expand
with additional plastic flow: it may never contract. The assumption of isotropic straim-hardoning
does not account for the Bauschinger effect exhibited by most metals when subjected to
alternating loads, but it is gemerally comsidered satisfactory in association with moaotonically
increasing louds.

The rate of expansion of a vield surface is governed by the function &{x). From the
stress—-strain curve of a unisxial test, a plot of #(x) vs the plastic component of strain, «”, may
easily be comstructed. It is convemiont to take the plastic work demsity as the hardening
parameter, i.e.

K= f oy def @

whachuucc.-?dutbemunduthec(x) — ¢’ curve. Therefore, initial yeild occurs at
x =( and the initial yield stress is denoted by o, The slope of the () - €’ curve, dé(x)/de’,
is denoted by H'.

Two materials are considered in this paper: (i) an elastic-perfectly plastic material with
H' =0, and (ii) an elastic-strain-hardening material with H’ equal to a positive constant.

Specialization for plane strain
It is convesnient to expand eqn (1) to a set of six functions, each defining one face of the
hexagonal yield surface,
Fl=g,—03-6(x)=0 Fl=oy—0y—-6K)=0
FP=—oy+0y-3(x)=0 F=-g+0-dk)=0 3)
PP=o-0n-#kx)=0 Fé=-a+0,-d(x)=0.
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For plane strain, defined by
€=0
Ve =0 O]
Yy: =0,
the z-direction is a principal stress direction and the relationships between principal and Cartesian
stresses can be written as
o= c’a. + s’o, + 2cs0,,
o, = s, + c2¢1'y —2cs0yy 5)
03=0:
in which ¢ = cos 8, s = sin # and 4 is the angle from the x-axis to the direction of o, measured
positive counter-clockwise. With these relationships, eqn (3) may be specialized in Cartesian
coordinates for the plane strain case as
F'= c?0, + 5’0, + 2¢50,, — 0, — 6(x) =0
F*=-5%q, - c’o, + 2cs0.,+ 0, — (k) =0
F?=(c*- s)0, — (¢* - sY)a, + 4cs0,, — 6(x) =0 ©
F'= 5%, + c’0,~ 2cs0,,— 0. — () =0
F= —c’a,-s’a,+2cw,,+a-,-&(x)=0

F*=—(c*-s)o, +(c*- s’)o, —4csoy, — (k) =0.

CONSTITUTIVE RELATIONSHIPS
Elastic stress~strain relations
For plane strain, incremental stresses are related to incremental strains by the standard
elastic matrix D, as
6o = Dybe Y
in which
8o =[50, 80, 50, 80,)7 ®
8¢ = [b¢,, 8¢, b¢., 8y,
and [ 17 defines the transpose of a matrix. If E and » define the Young’s modulus and the
Poisson’s ratio of the material, respectively; then, D, is given by

1~y v v 0
E v 1-v » 0
De=G)i=2| v » 1-» 0 )
0 0 0 (-2

Since ¢, =0, eqn (7) may be reduced to

&0 =D, e 10)
in which
b0 = [b0,, b0, 60,)"
8¢ = (B¢, Se,, by,,]" (11)
and D, is given by
E [(l -v) v 0 ,7]
D, = s v (1-9) 0 | 12)
(1+»)1-2v) 0 0 (1-20/2
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The inverse of eqn (10) is often required and may be written as

8¢’ =D, 60 13)
in which
1-v -» 0
y = ——-l;' [-—v 1-» 0 ] (14)
0 0 122

The superscript, e, is used to emphasize the elastic nature of the strains found from egn (13).

Plastic stress-strain relations
For a material in the plastic state, relationships between stresses and strains are nonlinear
and are stated in the rate form as

o =D,é (15)

in which o and é are stress-rate and strain-rate vectors respectively, and D, is the plastic
stress—strain transformation matrix. In numerical solutions, however, not the rate form but an
incremental form of (15) is used which may symbolically be described by

60 =D,5¢. (16)

Determination of an explicit form of D, requires the definition of the yield function and a
flow rule that may be written as

8¢’ = Ag- 17

in which 8¢” is a vector of incremental plastic strains and A is a positive scalar comstant of
proportionality. It is also necessary to assume that small increments of strains are divisible into
elastic and plastic components, i.e.

8a =8¢ + 8. (18)

Computation of 8¢° from eqn (7) by inversion and substitution into eqn (18) along with eqn (17)
yields

oF

= -1 —
Se=Dy 80'+Aaa (19)

This latter expression, along with the differentiation of the yield function, leads directly to the
plastic stress-strain matrix associated with that yield function. Note that the Tresca yieid
condition is expressed as a set of functions given in eqn (6) and it is necessary to develop
several plastic stress-strain matrices, D,', one for each function, F'.

The expansion of eqn (19) for yield function F' gives

+A! oF

e, = 1 0, ~ 3 b0, ~ F o, + X I (200)
se,=-1—';,aa,+%.aa,~-gsa,+a‘% (20b)
5¢,=-%w,—-£-.so,'+%,sa,+,\‘%§: (20¢)

Syey = 2(l+v) 8o, +a1 2 oF! (20d)

302
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and the total differential of F' is written in the incremental form as

aF’ aF! aF F

0= -~—8cr +—-&r +—60+ sa - A! Q1
in which
i _9F , 1
A= P dx’\‘. (22)

Since e, = 0 for plane strain, eqn (20c) may be solved for 8o, to give

i 9F
8o, = (b0 + 80,) — Ex 7.

z

(23

which is substituted into eqns (20a, b, d) and (21) to yield a reduced set of four independent

equations
x=(E) (5o (v i
= ) i~y )80', (‘;F’i v%g-)h"
et Yoo+ (2
and

o= (Tt v Yot (v 3 o (32 Y= 414 530

Equations (24) may be written in the matrix form as

(&1-0 &0 @

(&%)

L‘ = (E.{, vﬁ) (26)

in which

2
Al=- [A“ + E(ﬁ) ] @n
8o and 8¢ are given in eqn (11), and D, is defined in (14). Expansion of eqn (25) gives

Se=D,'80 +LiA’ (28a)
and
0=L"60+AA’ (28b)

which may be solved simultaneously to yield expressions of A’ and D,’ for plane strain as

A'=M"L"D3se 29)
and
D, =D,~DL'M LD, (30)
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in which
M =-A+L"D,L. 31)

It is also necessary to derive the matrices for plastic stress~strain relations that correspond
to the corners of the yield surface. The total incremental strains at a corner are given by

=Dy "0+’ ("F)H'(‘;’:). (32)

Taking the derivatives of both yield functions, F' and F’, which intersect to form corner “a”.
gives

0= [-ai] 8o - A'(A + %) (33)
0= [%Ii] 8o - AI(A'+ A7) (34)
in which A’ and A’ are defined as
im 9F g L
A'= ax dx A'+AhH
and (35)
oF! 1

iz _9F
A w KA

Equations (32)~(34) lead to expressions for A and D, in a manner similar to that used with
respect to the sides of the yield surface, i.e.

A® =M*"'L* D,5¢ (36)
and
D,* =D,-D,L*M*'L*'D, 37
wherein
M*=-4°+L*"D,L° (38)
and
i
- (i)
Le=(L":L]] (40)
i aF' : aF'\ (oF'
A+ E( ) A'+E ) M)

| @41)

|we@E)E)  weniE)

Evaluations of plastic stress-strain matrices

If o, is defined as the major primcipal stress, then it is necessary to develop explicit
expressions of the plastic stress-strain relations for Sides 1-3 and Corners A, B, E and F only.
Examination of eqns (30) and (37) reveals that they can be evaluated only if A’ is known for
eqn (30), and both A’ and A’ are known for eqn (37). It may be shown [6] that A’ (in either
case) and A’ are each equal to H', the slope of the G(«x) vs €” curve.
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Appropriate substitutions into eqn (30) lead to

i vl - v) 0
0 0 (1=2»)2(1 - »)]

E(i~») dy dn dy

__(+wi-2y) dn dnij, (42
[(H'+2E/(1+v)] Lsymmetric ds

in which for Side 1,

dy= c, dp= czsz‘ dy= s,

dp=5s'. dn=-c%, du=c?, “3)
for Side 2,
=t = 22 = e
ah Wt 4
for Side 3,
dy=(c*-5%, dp=-(c*~s?, dyy = 2¢s(c* - 5%),
dp=(c*~5%, dn=-2cs(c?-5), dn=4c%% “5)

Appropriate substitutions into eqn (37), and letting n = H'(1+ »)/E, lead to

1 Wi-») 0
D,-=a-;€(;;-(l;—§)2—v) ([»/(1-—») 1 0 ]
0 0 (121201 - )}

dy dy dy
1-2»
e dn dg]) ,  (46)
(1=»)2n+3) [symmetric dy,

in which for Corners A and F,

dyy=2c*+25*~2¢%% + (s

dip=—c*-s*+4cs + n(cs?)

diz=3c3s -» 3es* + n(- cs?) @
dn=2¢*+2s5*~2c%s* + n(c")
dn=-3cs+3cs*+ 9(- c*s)
dys = 6cs%+ n(cs?);

for Corners B and E,

dy = 2¢4 + 254 - 2% 5% + p(c* + 5* - 2c%5Y)
dip=—c*—s*+4c* 2+ n(= c*— 5%+ 2c%sY)
diz=3¢%s - 3cs* + 9(2c%s - 2¢5%)
dn=2c*+25* - 2¢5% + 9(c*+ s~ 2¢%s?)
dn=—3cs+3cs>+ (= 2% + 2cs%)

dy = 6¢5% + n(4cis?).

48)
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SOLUTION PROCEDURE

As previously noted, in numerical solutions of elastic-plastic problems, it is convenient to
replace the rate form of the constitutive relationship for a material in the plastic state with an
incremental form.

The solution may then be obtained by an incremental tangent modulus approach, whereby
the load is applied in small increments during each of which the structure is assumed to behave
linearly. The stiffness of the structure is modified after each load increment, and the process
continued until the desired load level is reached. The solution obtained by this simple technique
will always be in equilibrium, but the stresses will violate the yield condition unless special
corrective techniques are utilized.

One such corrective scheme is the interpolative scheme which has been described in Ref. [7]
for a two-dimensional plane stress yield condition. For the plane strain case, however, a
three-dimensional yield condition must be considered. Fortunately, it is possible to construct a
two-dimensional yield surface for the plane strain case by considering equivalent stresses and,
thus, the referenced corrective scheme becomes directly applicable.

The concept of equivalent stresses is best explained with the aid of Fig. 2, in which hexagon
ABCDEF represents the intersection of the Tresca yield surface (Fig. 1), with the plane defined
by o3 =0, herein called the “zero-plane”. Hexagon A'B'C'D’E'F” indicates the iniersection of
the yield surface with the “alpha-plane” defined by o3 = a. Point P is the origin of the 7|, o,
and oy-axes and lies on both the zero-plane and the centroidal axis of the hexagonal cylinder.
Point Q identifies the intersection of this centroidal axis with the alpha-plane and may be taken
as the origin of a set of equivalent axes o159 and o8 parallel to the o, and oraxes,
respectively. The hexagon A’B'C'D’E'F’ may then be considered as a two-dimensional yield
surface for any given stress state (o), o4, o). The equivalent stresses can be expressed in terms
of the principal stresses as

[14 =0n—-0o
1BQ 1 3 (49)
OpQ = 02— 0.

Functions that describe an equivalent yield surface can be found by substituting eqns (49) into

eqns (3) to yield
F'® =g, 50— d(x)=0

F*Q = — gypp = G(x) =0
F*BQ = g, gp — 0amg — {x) = 0
FQ = gypo —(x) =0

FB =g p-6(x)=0

F*8Q = - g g + 02mg — ().

(50)

%eq

Fig. 2. Equivalent stresses.
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Equations (49) and (50) also hold for plane stress conditions, in which o = 0. Therefore, the
corrective scheme developed for the plane stress case[7] may also be used for the plane strain
case. The details of the solution procedure are available in Ref. {7].

NUMERICAL EXAMPLE AND RESULTS
Solutions for a notched tension specimen in plane strain, subjected to a monotonically
increasing load, are obtained using the interpolative technigue. Both the perfectly plastic
material and the strain-hardening material with H' = 0.032E are considered in the analysis. The
finite element mesh used in these solutions along with the geometry of the specimen are shown
in Fig. 3. Only one quarter of the specimen is used in the model due to the two axes of
symmetry that are present.
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Fig. 3. Finite element mesh for a notched tension specimen.

The progression of plastic enclaves in the specimen at various loads for elastic-perfectly
plastic and elastic-strain-hardening materials due to Tresca yield condition are sketched in Fig.
4, which also shows the corresponding enclaves due to von Mises yield coadition for
elastic-perfectly-plastic materials. The latter have been taken from Ref. [8] and are reproduced
here for comparison purposes. The values of load in Fig. 4 are given in a non-dimensional form,
i.. PI(A-ao), in which P is the total load acting at the end of the specimen, A is the
cross-sectional area of the specimen at the notch root and o is the initial yield stress of the
material. An important observation which can be made from a compaerison of the enclaves due
to usage of the Tresca and Mises yield conditions for elastic-perfectly-plastic materials is that
the results obtained by the use of the Tresca yield condition are conservative. For any given
magnitude of load, the plastic enclaves for the Tresca yield condition have progressed farther
into the specimen than have those due to the von Mises yield condition. Similerly, a plastic
enclave which extends completely across the specimen is obtained at a lower load in the case of
the Tresca yield condition. This result is in agreement with the fact that the Tresca yield
condition is inscribed completely within the von Mises yield condition. The effect of a small
amount of strain-hardening in the material on the progression of plastic enclaves due to Tresca
yield condition is minimal as the shapes of the enclaves remain almost identical except that
their growth rate is retarded somewhat.
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von Mises Tresca
H=0(Ret. 9) H'=0

Tresca
H=QO3RE

Fig. 4. Progression of plastic eaciaves: (ufuwbcdymmﬂouymvonmmwm
from Ref. [9), (b) for perfectly-plastic material obsying Tresca vield condition, (c) for H’ =0.032E and
Tresca yield condition.

Strain distributions along the minimum section of the specimen are plotted in Figs. 5 and 6.
Though the strains for the strain-hardening case are in general slightly less than those for the
perfectly-plastic case, nohr.e effects of the strain-hardening phenomenon are evident. Stress
distributions in the specimen for perfectly-plastic and strain-hardening materials are shown in
Figs. 7 and 8, respectively. It is obvious that the strain-hardening phenomenon has very little
effect on the stress patterns for both o, and o,. It is of interest to note that o, near the notch
root exceeds twice the value of &(«x). This is admissible even for the perfectly-piastic material
since normal strésses in the plane strain case may all attain large values without violating the
yield condition.

Some effect of strain-hardening is evidenced in Fig. 9 in which longitadinal strains at the
notch root are plotted at various loads. The strain-hardening maseriai exhibits less strain for a
given load than does the perfectly-plastic material. It should also be noted that the curve for the
perfectly-plastic material does not become horizontal even after the plistic enclave has
extended complstely across the width of the specimen, indicating the capsbility of the specimen
to carry additional load. Incremental loads ranging from 1/10¢h to 1/80th of the initial yield load
mwmmmmformmmmmmww
cases.

It should be of interest to note that some elements in the piastic regions initially yielded on
Side 2 of the Tresca yield condition (Fig. 1) and gradually moved to Side 3 with the increase in
load. Stresses in several other yiclded clements changed with an increase in load in such a
manner that the stress point moved along the cdge common to Sides 2 and 3, after initially
yielding on-Side 2. Such stress points complicate conventional continuum analyses and for that
reason the nonlinear von Mises yield condition has been used in such situations. Finite element
analyses, on the other hand, are not unduly affected by such stress points, as indi¢ated above,



Usage of the Tresca yield condjtion 635

e 10 l
~
";‘» —P/Ag e ll.326 m
5 ) — 1202
- 5 3 [ |.°96
& —— 09485
: =8
3 33283
g ° R ————— —
025 0.50 0.7 Loo
Distonce from Notch Root, x/W
0.2% T
PN s——P/Ac=1.326 |
© 0.20 N —.
) i-— 202
u, < U
[™] 0.15 A" ] N
5 |
E 0.10 . N Q.948
2 N T o |
£ oo0s Sy ~———1-0500
g P ——— 02!}_
2 o =
- 005 L
0.28 0550 ors 100

Distance from Notch Root, x/W

Fig. 5. Strains for perfectly plastic specimen: (2) ¢,; (b) ¢,

]

® 10
w
kY
L
£
°
b S
©
~
3
€
k] ()
02% 050 0.7% 100
Distonce from Notch Root, x/W

025 ]
© t 3
& 020 P Sy 18
Y ) 1201
v 015 1.108
. . S
&  0I10 N 0.945

a N \

: \ \ [ —— 0714
2 005 \\ — -
2 0 5

-0.05

0.28 050 0.7% 100

Distance from Notch Root, x/W

Fig. 6. Strains for strain-hardening specimen: (a) ¢,; (b) ¢,



636

S. C. ANAND and F. E. WEISGERBER

2.5 f
o - |
g 20 ; :
b ;
"
$ s f'\
& \ ATy 326
< N
N
s 1.0
€ ‘
3 |
4 |
0.5
\ __0800]
i 0.283
)
0.25 0.50 0.75 100
Distance from Notch Root, x/W
(K-} T T
o PRay: 1.326
i 1.300 5
& 1.202
Lo 1.096
g = 0.945
< 0.715
(7] R
5 3383
S os =
°
€
-
Z
o
028 050 0.7% 1.00

Distance from Notch Root, x/ W

Fig. 7. Stresses for perfectly plastic specimen: (a) o,; (b) 0.

25 T
| B
2.0 }
Q
N
b>
. t.5
» ~Plag 2 1.326
§ L 1301
]
] ‘
° : 1.201
© !
g : 0.945
—g 05 : j 0.714
z ‘ 0.283
|
0 |
025 050 0.75 100
Distance from Notch Root, x/W
bo
5 s
* — P/Ag = 1.326
° 1301 )
a 1 1.201
= p—— 0945
» — 0.714
° 0.504
] 0.283
2 0.5 ——t
£
2
o L
0.25 0.50 0.75 1.00

Distance from Notch Root, x/ W

Fig. 8. Stresses for strain-hardening specimen: (a) a,; (b) 0.



Usage of the Tresca yield condition 637
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Fig. 9. Load vs strain in y-direction for an element at notch root.

except that schemes to determine which face of the yield surface is involved in plastic flow for
a particular element must be built in the computer program.

CONCLUSIONS

It has been shown in this paper that incremental plastic stress-strain relations in plane strain
can be easily developed for materials that obey the Tresca yield condition. These relations,
expressed in terms of the direction of the major principal stress, can be used to solve
elastic-plastic problems by the incremental tangent modulus approach as conveniently as those
due to the von Mises yield condition developed by other authors[9]. The points of singularity
(corners) in the Tresca yield condition do not present any special probiem and the advantages
of a smooth yield surface, like Mises’, are not obvious. The concept of an equivalent stress
permits a redefinition of the yield planes in a convenient form and the solution procedure
developed earlier for the plane stress case becomes directly applicable.

The results of the numerical example indicate that the use of the Tresca yield condition
leads to loads, for a continuous plastic zone across the notched tension specimen, that are
smaller when compared with those obtained by using the von Mises yield condition.
Consequently, the Tresca yield condition should be employed in elastic—plastic analyses of
metal structures, particularly for those cases where a larger factor of safety need be guaran-
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