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AIIInd PJutic ItreIHtrailllelatioDs for perfectly plastic Uld stIaiMardeaiIa materiIII in pille straia
CODdiIioD lie developed for IlWeriaIs that obey the Tmca yield cxwfitioeL A metbod of ...... tile
~ yield SurfKC by colll1rUctiD&. two-dime••nll ....... yield sarfac:e is descrW.
The plude _II .... reIatDa& lie .,...,. to obi.- eIIIIIic "lade IOIuIioDs for • DOtChId .....
specimen sabjecled to lIIODOtOlaicIIIy iIlc:reuiIII 1oIds. The reIUIts lie COIIPII'd to .......,
.v6bIe ill ... Iitenttn for the VOD Miles yield cOllllidoD It is ........ die ......
deo.I"- for die TJeaca JieId COIIlIidon ill plane saaiD CID be • ..........01 __,...
........, wIiI::b baw -.ly bin employed. TK ............ ia IIlR { .eo" life,
•• iIlIlIIat it is duinbIe to lISe the Treaca yield COIIditioa ia tJuric pilitic ....,. of ......=t NI
ill deIip.

INTRODUCTION

The illite ele8Ient method bas often been shown to be well-s1lited to the solution of problems
involviDa DOIHiDear behavior. This is especially true for problems iD pIu1icily ad .....-ous
papers have described solutions to such problems. Reference [1] includes a bdIIacaG8llt of the
early his&ory of the use of~ 6nite element method in plasticity prOblem. _W•• (1) and (3]
live exteDlive~'on this topic.

AItbouP the Trnca yield condition ,bas DOt JODe completely UIlJlOdIecl(l. 3, 4], a .-wey of'
the .-.....e 'Iii ues that von Mises yield conditioD .... pndcMpJiwqdty .... ued in
elutio-pllllic fiIaiIe element ualyses. It is apparent tbIt for IUDY , .. ill .pIIdicuIar
for the colDDloDly used metals, the von :Mises yield condition apee. as well willi the
experimeDtalty produced yield surfaces as does the Tmca yield condition. Howevw,.iBce the
Tresca yield c:oadiUon is _cribed within the von Miles yield cndidoD., it is DR~ve

aDd safe to _ die fOl'DlCl' in actual deaipa. FurtbenDore, even thouP the iIidI1 yield aurfaces
for many materials may aeneraJ.1y be established as beiDa smooth, aDd COIIIeqUIIItIyPNferable
to work with, recent researeh[S] indicates that certain loadiq pr'Op'aIDs may lelA to subsequent
yield surfaces which exblbit sinplarities. Thus, the manner of bandIiDa yield functions with
sinaularities becomes even more relevant.

In this paper, elastic-plastic stress-strain relations are developecl for the p1aDe strain cue
and a method· particularly suitable to bandle the three-cIimeDlioDal yiBId afacea with
si.nplarities in plasticity problems is described. These reJatioIllhips are UIeIko obIain dutic
plastic solutions for a plane strain notched tension lIJ*imen subjected to DlOIIOtOIlicIIl
increui:Da loads usiDa the flDitc element teclmique. Tbe results are colllpU'ed to those pre
viously available in the Hterature for the von Mises yield condition.

TRESCA YIELD CONDITION

The Tresca yield condition may be written in terms of the principIIatreues as

F =(0'1 - 0'~2 - a'CI':)Jr(11'1 - 0'])2 - a'(1C )][(0'2 - 0'])2 - a'(1C») - 0

tProfoaor of Civil r air I iDa
iAuistut Profeuor of Civil 2111iDeaiJla.

(1)
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in wbic:h ti(1C) is twice the maximum permissible shear StrOlS in a material in the plastic state.
This yield condition can be represented paphica1ly by a reauIar hexaconal cylinder with its
centroidal axis oriented equidistant from the three priDcipal stress axes 0'," 0'2, 0'), as shown in
FII. 1, in whkh~ of. tbe six faces of the beQlODal cylinder is numbered and each edae or
corner is identMed with a letter.

Fora"""~.••"." ·1Udace "...,' a-plutic
history of , of ,,,,,,_ DOt

colf_ to'" appareat~of metals~ ~
that yield surfaces may cba8II r"candy once plastic flow takes place. A 10llltiistory of
e~·1au made it obvious that ~ relationlbip between the plastic ftow and the
kinetics of a yield surface is coapIex, aad caamot be liven by a aoeraDy acceptable
................ O••• p •••~ ...... eIIJIIIoY .•. ,16_ of ...
Ift'r II ,.. b....... aDd the ....,. IIlUIt bear in ..... n 'h.... of the
.I? 2 •

.............. il. c•••i...... iIldlia paper, is ,..yWd
behavior which may be INd, UDder this auumpdoa, the yiIId "..'.....,.....
widart.· :iI-r.,...c:--.TIle ..I'*' , ._
does DOt .,.., ' elect tUibitecI by moat to
....n 7 itll .., c..·IiIf..... 1Misfactory in auodtda..widl"'~_If Ibeds.

The of i•• of a yield _ICe is IOvemed by thef~ #(IC). FNIIlcbe
......~ of a p'p'" teat. a plot of 8(1C) VI the·'" caapoMrrt' ole -" ay
tIIiIy ... 00 It is conveaiIIlt· to tab the .... work· ""'u .....
....... i.e.

(2)

which is rseop;,,,d .. cbe ana" tile 6(1C) -.' curve. Therefore. iaiPaI yeild oecurs at
IC -0 ancltlle", yield a" is deaoted by 0'.. The slope of the 6(1C)- ~ curve, U(IC)/d-',
is byHi .

Two ~..iP dIia .,.: (i) an. e1astic..,.pec:dy~ matf!I'ia1. with
H' • 0, and (ii) an eIutic..trairr'-" '.. material with H' equal to a pOSitive coutaDt.

Sp«itIllzMio,,/or pItuae straUt
It ia COIl~ to oxpad tlQD (1) to a set of six funcdons. each deAniIt ODe face of the

hexaaonal yield surface,

F I =0'1 - 0') - 6(1C)· 0

p2 =- 0'2+ 0') - ti(<<) =0

F) = 0'1 - 0'2 - ti(1C) = 0

p4 = 0'2 - 0') - ti(1C) =0

F' =-0'1 +0'3-ti(1C) =0

p6 = - 0'1 + 0'2 - 6(1C) = o.
(3)
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Ez =0

'Y.rz =()
'YYZ = 0,
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(4)

the z-direction is a principal stress direction and the relationships between principal and Cartesian
stresses can be written as

0'1 =c20'% + S20'y + 2csO'%y

0'2 = S2O'%+ c20'y - 2csO':ry (5)

in which c = cos 8, S = sin 8 and 8 is the angle from the x-axis to the direction of VI measured
positive counter-clockwise. With these relationships, eqn (3) may be specialized in Cartesian
coordinates for the plane strain case as

pI =c20'% + S20', +2csO'.., - v. - 6'(<<) =0

pz =- S20'~ - c20'y +2c,v.., + 0'. - 6'(<<) =0

p3 =(c2- S2)0'% - (c2- S2)0'~ +4csv.., - 6'(<<) =0

F =S20'% + c2v, - 2c,v.., - Vz - 6'(<<) = 0

F' • - c20'% - S20', +2clfT.., +0'. - 6'(<<) =0

p6 =- (c2- S2)V% + (c2_ S2)V, -4csO'.., - U(<<) =o.

(6)

CONSTITUTIVE RELATIONSHIPS

Elastic stnss-strain rtl4tions
For plane strain. incremen~ stresses are related to incremental strains by the standard

elastic mattix De as

in which
6fT =[3fT", 3fT" 8fT.. 3fT..,]T

Is. = [BE", BE" BE.. 8'Y..,]T

(7)

(8)

and [ ]T defines the transpose of a mattix. If E and ., define the Young's modulus and the
Poisson's ratio of the material. respectively; then. Do is given by

[

1- JI

E JI

De= (1 + vXI-2v) ~

Since BE. =0, eqn (7) may be reduced to

.,
I-v.,
o

.,
JI

1- .,
o cl-LJ (9)

6fT =D,8e
in which

6fT:o: [8fT", 8fT" 8fT..,fr

Is. =[BE", BE" 8'Y..,]T

and 0, is given by

E [{1-v)., 0J
Dr :0: (I + .,)(1- 2J1) 0" (1-

0
v) 0

(I-2v) .
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(10)

(11)

(12)
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The inverse of eqn (10) is often required and may be written as

,.- -D,-'6cr (13)

in which

[

1- v - v 0]
D,-I= 1;' . -v I-v 0

o 0 1/2
(14)

The superscript, e. is used to empbuize the elutic aature of the strains found from eqn (13).

Platic Jlra,-1II'ain rrIGtiolll
For a material in the plutic state, relatioaahips between stresses and strains are nonliDear

and .. l1IIIdiD..,.....·as

v=D"i (15)

in which v aDd i are stre....,.. aad straiJH'ate vecton respectively, and D" is the plastic
streaa-ItrIia tnDaforma1ioa...arix.la.....ncu soluUoas, however, not the rate form but an
incre...... form of (15) is UIId .hicb may s}'lbbOlically be described by

6cr=D"k (16)

DetmDiDaUon of an explieit form of D" requilesthe defiaition of the yield function and a
ftow rule that may be written as

(17)

in wIIich~ is a vectGr of ....... JlIMdc ....... A is a poIiUvo ...-t of
proportioaaIity. It is also DeCOIUI'Y to assume that small increments of stniat di¥iaible into
_tic and pJaatic components, i.e.

.·.·+w. (18)

Computation of .- from eqn (7) by inversion and substitution into eqn (18) aIona with eqn (17)
yields

(19)

This latter expression, aIoq with the dif....tiation of the yiekl fUDCtio~ leads directly to the
plastic stress-strain matrix associllted with that yield function. Note that the Tresca yield
condition is expressed as a set of fuctiona liven in eqn (6) and it is necessary to develop
several plastic stress-strain matrices, D"l, one for each function, Fl.

The expansion of eqn (19) for yield function pi gives

v v· 1 I aFI

Be =--800 --800 +-800 +A -" E" E 1 E" au:

(20&)

(2Ob)

(2Oc)

(2Od)
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and the total differential of pi is written in the incremental form as

(21)

in which

(22)

Since 8f: • 0 for plane strain, eqn (2Oc) may be solved for 60': to give

(23)

which is substituted into eqns (208, b, d) and (21) to yield a reduced set of four independent
equations

2 i i

8f•• e-: )60'.- ve~V)6o',+(:=: + II ~)Ai

8f,. - lie ~1I)6o'x +C~1I)6o', + (::: + II :~)Aj

8-yxy • 2C ~1I)6o'XY + (:;:)~ i

and

(24)

Equations (24) may be written in the matrix form as

in which

8tT and IN are given in eqn (11), and D,-I is defined in (14). Expansion of eqn (25) gives

IN =D,-I8tT +LiA i

and

(25)

(26)

(27)

(28&)

(28b)

which may be solved simultaneously to yield expressions of AI and D,i for plane strain as

(29)

and
(30)
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in which
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(31)

It is also necessary to derive the matrices for plastic stress-strain relations that correspond
to the corners of the yield surface. The total incremental strains at a corner are given by

(32)

Tatina the derivatives of both yield functions, pi and pi, which intersect to form corner "0".

gives

0= [~~r8u - Ai(Ai+ Ai)

0= [~r8u-Aj(Ai+Aj)

in which Ai and Ai are defined as

and

(33)

(34)

(35)

Equations (32H34> lead to expressions for A and D, in a manner similar to that used with
respect to the sides of 'the yield surface, i.e.

(36)

and

wherein

and

M"' ... _.to +LorD,Lo

AO=ea
LO==[LI;Li]

.to =_[ A'+ B(':.r , A'+B(~)~if.)]
Ai+E(~)(~J Ai+E(~J .

(37)

(38)

(39)

(40)

(41)

Ev41utiolU 01 pllutic .rtla.r-.rtraiIJ matriet.r
If (7'1 is cWMd IS tile ,.... ,tbu it is r)! to dev" e~

expreuions of the pJutic streu-aarain relatioaa for Sides 1-3 and Comers A, S, E aad F only.
SnmiMtion of eqas (JO) aad (37) rev_ that' they. can be evaluated oaly if A I is mown for
eqn (JO), and both AI and AI are known for eqn (37). It may be shown [6] that AI (in either
case) and' AI are each equal to H', the slope of the cT(K) VS .' curve.
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Appropriate substitutions into eqn (30) lead to

([ 1 "(l- 1')

(l-2')1~2(1- .Ji EO - II)
Dp =(I + 11)(1- 211) "(I; II) 1

0

E(I-.) [d" d" d"])(l + 11)(1- 21') d'D, dn , (42)
[H' + 2E10 + v)}' symmetric d33

in which for Side 1,

dll =e~. dl'l"'" e2s2
, du " e3s, (43)d22 = s~. dn .. - e3s. dn = e2s2

,

for Side 2,

du = s~, dl2 = e2s2• du = - es3
,

(44)d22 =e~, dn = -e3s, d33 = e2s2
,

for Side 3,

dll .. (e2 - 1"}2, dl2 =- (e2
- S2)2, d13 "'" 2el(e2 - 1

2
), (45)d22 = (e2 - S2)2, d23 = - 2es(e2- S2), d" = 4c

2s2
•

Appropriate substitutions into eqn (37), and letting 'J "'" H'(1 + JI)/E. lead to

([1 "(1- II) o ]• E(l- JI)
Dp "'" (1 + 1')(1 - 21') "(10- 1') 1

(1- 2J1)/~2(1-1')]0

1_2. [d" d" d"])- . d du , (46)
(1- JI)(2'J + 3) trisymme c d33

in which for Comers A and F,

dn =2e4+2s4
- 2e2

,
2+'J(s~

dl2 =- e4
_ 1

4 +4e2, 2 + 'J(e2s"}

d l3 =3e3s - 3el3+,.,(- es' )

d22 =2e~+U 4-2e2s2 +'J(e4
)

d:a =- 3e' s +3es' + 'J(- e3s)

dn =6e2, 2.+ 'J(C2,"}~

for Comers Blind E,

dn .. 2e~+ 2s~- 2e2,2+ 'J(e~+ ,~- 2e2,"}

d12 "'" - e4
- ,

4 + 4C2
S

2 + 'J(- e4
- s" + 2e2s2

)

dt3 = 3e3
, - 3el3 + 'J(2e3

, - 2el')

d'D, =2e4 +214 _ 2e2s2+'J(e4 +s~- 2e2s~

d23 =- 3e' s + 3es' + ,.,(- 2e' , + 2es'l

dn =6e2
,

2 + 'J(4c2s"}.

(47)

(48)
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SOLUTION PROCEDURE

As previously noted, in numerical solutions of elastic-plastic problems, it is convenient to
replace the rate form of the constitutive relationship for a material in the plastic state with an
incremental form.

The solution may then be obtained by an incremental tanpnt modulus approach, whereby
the load is applied in smaU inerements duriDg each of which the structure is assumed to behave
linearly. The stilness of the structure is modi6ed after each load increment, and the process
continued uld the cIeainMlload level is reached. The solution obtained by this simple technique
will always be in equilibrium, but the stresses will violate the yield condition unless special
corrective techniques are utilized.

One such corrective scheme is the interpolative scheme which bas been described in Ref. [7]
for a two-dimensional plane stress yield condition. For the plane strain case, however, a
three-dimensional yield condition must be considered. Fortuna&ely0 it is possible to construct a
two-dimensional yield surface for the plane strain case by considerilll equivalent stresses and,
thus, the referenced corrective scheme becomes directly applicable.

The concept of equivalent stresses is best explained with the aid of Fig. 2, in which hexagon
ABCDEF represents the intersection of the Tresca yield surface (F... 1), with the plane defined
by tr3 =0, herein called the "zero-plane". Hexagon A'B'C'DE'P indicates the interseCtion of
the yield surface with the "alpha-plane" defined by (T3 =a. Point P is the oriain of the trlt tr'1

and (Trues and lies on both the. zero-plane and the centroidaJ axis of the hexagonal cylinder.
Point Q identiftes the intenection of this centroidaJ ws with the alpba-plane and may be taken
as the oriain of a set of equivalent axes trurQ and tr1.l!Q parallel to the (TI and (Trues,
respectively. The beUlOn A'B'C'DE'F may then be considered as a two-dimensional yield
surface for any liven slreU state (trlt tr'1o D']). The equivalent stresses can be expressed in terms
of the prillcipal stresses as

(TIBQ = (TI - (T3
(49)

Functions that deseribe aa equivalent yield surface can be found by substitutins eqns (49) into
eqna (3) to yield

plBQ = trlBQ - 6(1() =0

p1BQ =- (T'1BQ - 6(1() =0

p3BQ =trlBQ - 0'urQ - 6(1() =0

r BQ =tr'1BQ - 6(1() =0

p5BQ =- (TIBQ - 6(1() =0

p6BQ =- (TIBQ + (T'1BQ - u(I().

F'II. 2. Equivalent stresses.

(SO)



U.. of the Tmca yieIcl condition 633

Equations (49) and (SO) also hold for plane stress conditions, in which tT)· O. Therefore, the
corrective scheme developed for the plane stress case (7] may also be used for the plane strain
case. The details of the solution procedure are available in Ref. (7].

NUMERICAL EXAMPLE AND RESULTS

Solutions for a notched tension specimen in plane strain, subjected to a monotonically
increasing load, are obtained using the interpolative technique. Both the perfectly plastic
material and the strain-hardening material with H' =0.031£ are considered in the analysis. The
finite element mesh used in these solutions along with the geometry of the specimen are shown
in Fig. 3. Only one quarter of the specimen is used in the model clue to the two axes of
symmetry that are present.

/'

ThiCkn...
• W/20

2W

Pia. 3. Fiaite elemeat mesII for • DOtebed teDtioII ........

The propession of plastic enclaves in the specimen at various loads for ~ect1y
pIutie and elutic-straiD-barcIeni materials due to Tresc:a yield CODdilion are sketched in FII.
4, which also shows the corresponding enclaves due to von Miles yield CODditiou for
elastic-perfectly-plas1ic materials. The latter have been taken from Ref. (8] and are reproduced
here for comparison purposes. The values of load in FII. 4 are liven in a DOIHtimeaIioul form,
i.e. PI(.A· tTo), in which P is the total load actina at the end of the specimn, A is the
cross-sectional area of the specimen at the notch root and tTo is the iaitial yield ItreII of the
material. An important observation which can be made from a comparison of the eDclavea due
to usaae of the Tresc:a and Miles yield conditions for elastic-perfectly-plutic --. is that
the results obtained by the use of the Tresca yield condition are couervative. For any liven
mapitude of load, the plastic enclaves for the Tresca yield condition have propeased farther
into the specimen than have those due to the von Mises yield coaditioo. SimiIuly, a plastic
enclave which extends completely across the specimen is obtaiDedat a lower 10Id ill the case of
the Tresca yield condition. This result is in agreement with the fact that the Tresca yield
condition is inscribed completely within the von Mises yield CODdition. The elect of a small
amount of straia-hardening in the material on the pr~ssion of plutic enclaves due to TI'eIQ
yield condition is minimal as the shapes of the enclaves remain IImoat identical except that
their IfOwtb rate is retarded somewhat.
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@
TrescQ
H'-O

o
Tresca
H'·O.O~E

Pia- 4. ProtmaioD of plUIic __vel: (a) for perlccdy-pluDc ......au obeyiq VOD MiIea yield COlIdiIion.
bom Ref. £'1. (b) for perf_.......... olIeJiII TrtIc:a yield condition, (c) for H'· 0.032£ and

Tmca yield condition.

Strain distributions a10III tile minimum sectioa of the specUnen are plotted in F.... Sand 6.
TbouIh the strains for the stnilHalrdeDiDa case are in ae.... sHlbtly less tban those for the
perfectly..plaatic case. 110'" elects of the strain-bardenial phenomenon are evident. Stress
distributions in the spec.. for perfectly-plastic and strain-bardeDin materials are shown in
FIp. 7 and 8. respectivelY. It is obvious tbat the strain-barcIeaiDa phenomenon bas very little
elect on the stress paUerDs for both u" and u,. It is of interest to nole that u, near the notch
root e.... ·twice.·... of°t1(K}. This is admisaible even for tile perfecdy"fIIetiC aaterial
since IICIil'-.J ..... in die .pIaee straiit cue Illay aD auaiJI· IIrae vm.s. witllu8t viofadBr the
yieldC01MlDon.

Some elect·of~ is evidenced in Pia. 9 in wbicb 1oD&itr ' at the
notch root· at varioU loeda. The straiJHwdeDiDl1ll8flerial ulUYs strain lot a
aiven told die ,....eotIy-plaatic material. It sIteuld also be noted that the curve for the
~1IItIIefiIfdoes not become horif.onaal even after the .. enoIa"e bas
exteIIlW CJ.....,.lICft*tIIe width of tile specimen. iadicIliaJ" ell•• of tile ....n
to carry ...1 ·"""'" loads fUlinlfrom 1/10ltHo l-'ot tIM initiII yillldioad
were applied in tbIse solations for both tile perfectIy.pltstic ..............
cases. I

ItslloUill" of iatenat· to DMe tbat some elements in tbeplastic ........ ....., yidledon
Side 2 of tile 1'rtIca yield ClCJ ftCH",. (Pia. 1) lIIId JI'*IuaBY moved· to·Side·3 widt dteincreue in
Ioed. Streuet in yjelded oItments cbanaed with an incI'eIu iD ··iOad in sue" a
...... that·1M poiat lIlOVed a10DI the • common to Sides 2 3. after iaidIily
yieJdiq OIl"" 20 8UCJt ...... poiDts cOllftPlicate colWefttional condDuuBt aadfor dlat
reason· the nonIiDear von Miaa yield CO~D has been .used ill sue" situtions. Finite element
analyses. on the other band. are not unduly afected by sucb stress points, as indieated above,
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except that schemes to determine which face of the yield surface is involved in plastic: flow for
a particular element must be built in the computer program.

CONCLUSIONS

It bas been shown in this paper that incremental plastic stress-strain relations in plane strain
can be easily developed for materials that obey the Tresca yield condition. These relations,
expressed in terms of the direction' of the major principal stress, caD be used to sol:ve
elastic-plastic problems by the incremental taaaent modulus approach as conveniently as those
due to the von Mises yield condition developed by other autbon(9]. The points'of sinaularitY
(comers) in the Tresca yield condition do not preseJit any special problem and the advantaps
of a smooth yield surface, like Mises', are not obvious. The concept of an equivalent stress
permits a redefinition of the yield planes in a convenient form aDd the solution procedure
developed earlier fer the plane stress case becomes direcdy applicable.

The results of the numerical example indicatetbat the use of the Tresca yield condition
leads to loads, for a continuous plastic zone across the notched tension specimen, that are
smaller when compared with those obtained by usin& the von Mises yield condition.
Consequendy, the Tresca yield condition should be employed in elastic-plutic analyses of
metal struetures, particularly for those cases where a larpr factor of safety need be JU&I'aD
teed.
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